University of California, Berkeley Physics 105 Fall 2000 Section 1 (Strovink)

ASSIGNMENT 12

Reading:

105 Notes 14.6 Hand & Finch 10.1-10.2

1.

Consider a uniform cube of side L. Inside the cube is a scalar field ϕ that satisfies the wave equation with characteristic wavespeed c. At the surfaces of the cube, ϕ is required to vanish.

 (\mathbf{a})

Show that for this system the total number of modes of vibration corresponding to frequencies between ν and $\nu + d\nu$ is $4\pi L^3 \nu^2 d\nu/c^3$, if $\pi c/L \ll d\nu \ll \nu$.

(b)

What would the result be for a (two-dimensional) square?

 (\mathbf{c})

A (one-dimensional) rod?

2. and **3.** (double credit problem)

Consider a homogeneous isotropic solid medium, i.e. a medium that, unlike a liquid, is able to resist being twisted (it "supports a shear stress"). The Lagrangian density for such a medium is

$$\mathcal{L}' = \frac{1}{2} \rho \frac{\partial u_i}{\partial t} \frac{\partial u_i}{\partial t} - \frac{1}{2} \frac{\partial u_i}{\partial x_j} C_{ijkl} \frac{\partial u_k}{\partial x_l} ,$$

where summation over repeated indices is (definitely!) implied. In this expression, the field variables are $u_1(x_1, x_2, x_3, t)$, $u_2(x_1, x_2, x_3, t)$, and $u_3(x_1, x_2, x_3, t)$. These describe the (vector) displacement \mathbf{u} of a small element of the solid from its equilibrium position \mathbf{x} . (The *strain* is obtained by taking spatial derivatives of \mathbf{u} .) The mass density of the solid is ρ , which for small values of \mathbf{u} can be approximated as a constant. C_{ijkl} is the "fourth-rank tensor of elasticity".

Exploiting the homogeneous medium's isotropy, one can show that the most general form for C_{ijkl} is

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) ,$$

where λ and μ , the so-called "Lamé constants", determine all 81 of its elements. The inverse of the compression modulus λ is proportional to the compressibility of the medium, and the inverse of the shear modulus μ is proportional to the extent to which the medium can be twisted.

Notice that the Lagrangian density for a solid medium could in principle depend on 19 variables (3 field variables, 3×4 derivatives of 3 field variables with respect to 4 independent variables, and 4 independent variables). In practice, our Lagrangian density has no dependence on the first and last category, so it is a function of only 12 variables.

Use the Euler-Lagrange equations for this Lagrangian density to derive the wave equations for compression waves $(\nabla \times \mathbf{u} = 0)$ and for shear waves $(\nabla \cdot \mathbf{u} = 0)$ in the solid. Obtain the phase velocity c for both cases, in terms of λ , μ , and ρ . Notice that an earthquake can propagate with more than one velocity!

4.

Consider an infinitely long continuous string in which the tension is τ . A mass M is attached to the string at x=0. If a sinusoidal wave train with velocity ω/k is incident from the left, analyze the reflection and transmission that occur at x=0. Define the reflection coefficient $R\equiv |\mathcal{R}|^2$ and the transmission coefficient $T\equiv |\mathcal{T}|^2$, where \mathcal{R} and \mathcal{T} are the reflected and transmitted amplitude ratios discussed in Lecture Notes section 14.6.

Show that R and T are given by $R = \sin^2 \theta$ and $T = \cos^2 \theta$, where $\tan \theta = M\omega^2/2k\tau$. [Hint: Consider carefully the boundary condition on the derivatives of the wave functions at x = 0.]

${\bf 5.}$ Hand & Finch, Problem 10.1 (stability in a central force)

6. Hand & Finch, p. 397, $Question\ 6$ (upside-down pendulum)

7. and 8. (double credit problem) Hand & Finch, Problem 10.9 (a)-(d) only (how does a child pump a swing?)